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Resul t s  a re  shown of an exper imenta l  study concerning the l a m i n a r  sub layer  region of a 
turbulent  boundary l aye r  with inject ion.  

A turbulent  boundary l aye r  at  a porous  plate  has  been the subject  of numerous  s tudies ,  inasmuch as 
such a type of flow is  encountered in many  prac t i ca l  p r o b l e m s .  I t  i s  well known, for  example ,  that  both 
the fr ict ion and the t he rm a l  flux at the wall dec rea se  cons iderably  even when the r a t e  of injection is  very  
low. 

At the p re sen t  t ime  the re  i s  a l ready  a sufficient volume of t e s t  data avai lable  per ta in ing  to the m e a n -  
veloci ty  p ro f i l e s  in the fully developed turbulent  region of a boundary l a y e r  with injection [1-5]. Much 
s c a r c e r  is  the informat ion avai lable  about the pulsat ing components  in th is  region,  and a lmos t  no m e a s u r e -  
men t s  have been made  in the v iscous  sub laye r .  

In this  study the authors  have a t tempted to examine the flow pa t te rn  in the v iscous  sub laye r .  

The t r ac ing  method,  which had been per fec ted  by the authors  of [6], was  employed h e r e  too.  The 
gist  of this  method was to photograph l igh t - re f lec t ing  fine pa r t i c l e s  implanted into the s t r e a m  and i l lu-  
minated l a t e r a l ly  f rom a pulsat ing light sou rce .  

The tes t  appara tus  is  shown schemat ica l ly  in Fig.  1. The t e s t  segment  was made up of a r ec tangu la r  
channel 30 x 30 m m  in c r o s s  section with t rans lucen t  top and side wal l s .  
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Fig.  i .  Bas ic  schemat ic  d i ag ram of the t e s t  i n s t r u -  
mentat ion:  (1) l amp,  (2) sIit ted s c reen ,  (3) Camera  
object ive,  (4) t rans lucen t  channel wal ls ,  (5) porous  
p la te ,  (6) injection,  (7) c a m e r a ,  (8) audio gene ra to r ,  
(9) e lec t ronic  s t roboscope .  
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F i g .  2. D i s t r i b u t i o n  of  m e a n  v e l o c i t y  n e a r  the  wa l l :  
Eqo (1) and A = 2.5 In ~? + 4.9  (1), Eq .  (3) and A 
= (exp0?wb/2U*) - 1 ) 2 u * / w  b (2), b = 0 and Re** = 900 
(3), b = 2.54 and Re** = 970 (4), b = 3 and Re** 
= 1240 (5), b = 3,8 and Re** = 1320, A = 2u* /w  b 
[((Wb/U*)q~ + 1)1/2 - 1 ]  (6), a c c o r d i n g  to  t e s t s  by  H.  
R e i h a r d t  [7] (7). 

Into the  b o t t o m  wal l  of  the  channe l  was  moun ted  a p o r o u s  6 x 200 m m  p l a t e .  The  t r a c k s  w e r e  p h o t o -  
g r a p h e d  at  a s e c t i o n  230 m m  away  f r o m  the  channe l  e n t r a n c e .  The  a c t i v e  m e d i u m  was  d i s t i l l e d  w a t e r  at  
r o o m  t e m p e r a t u r e .  The  s i z e  of  p a r t i c l e s  i m p l a n t e d  into  the  s t r e a m  w a s  in the  5 -20  # m  r a n g e .  

The  o p t i c a l  i n s t r u m e n t a t i o n  i s  a l so  shown in F i g .  1. A s l i t  d i r e c t l y  in f ron t  of the  I F K - 1 2 0  f l a s h i n g  
l a m p  w a s  p r o j e c t e d  by  m e a n s  of a w i d e - a p e r t u r e  o b j e c t i v e  and t h r o u g h  the  t r a n s l u c e n t  channe l  l id  Into the  
t e s t  zone of the  s t r e a m .  On the  s a m e  t e s t  zone was  focused  the  c a m e r a  with  an a t t a c h m e n t  f o r  x 8 m a g -  
n i f i c a t i o n .  Wi th  a m i r r o r - t y p e  v iew f i n d e r  i t  was  e a s y  to  o r i e n t  the  c a m e r a  t o w a r d  the  i l l u m i n a t e d  s t r e a m  
zone n e a r  a channe l  wa l l  and to  t r a c k  the  f low d u r i n g  p i c t u r e  t a k i n g .  A s e r i e s  of f l a s h e s  of the  l a m p  was  
t r i g g e r e d  by  an e l e c t r o n i c  s t r o b o s c o p e  to p r o d u c e  on the  p h o t o g r a p h i c  f i l m  a s e r i e s  of  i m a g e s  of the  s a m e  
p a r t i c l e  ( i n t e r m i t t e n t  t r a c k i n g ) .  The d e v e l o p m e n t  of many  f r a m e s  c o n t r i b u t e d  to a r e l i a b l e  d e t e r m i n a t i o n  
of the  l ong i t ud ina l  u - c o m p o n e n t s  and the  v e r t i c a l  v - c o m p o n e n t s  of m e a n  f low v e l o c i t i e s  a s  we l l  a s  the  r m s  
of t h e i r  p u l s a t i o n s  ~-u f2 and - /v T2 . 

F i r s t  we m e a s u r e d  by  t h i s  m e t h o d  the  v e l o c i t y  and the  t u r b u l e n c e  l e v e l  in the  m a i n  s t r e a m .  The  
t u r b u l e n c e  l e v e l  h e r e  w a s  3 A%. The  v e l o c i t y  in the  s t r e a m  o u t s i d e  the  b o u n d a r y  l a y e r  was  m e a s u r e d  by  
t h i s  m e t h o d  and a l s o  wi th  a P i t o t  tube :  the  r e s u l t s  did  no t  d i f f e r  by  m o r e  than  0.5%. The  v e l o c i t y  d i s -  
t r i b u t i o n  in the  v i s c o u s  s u b l a y e r  wi thout  i n j e c t i o n  a g r e e d  with  the  r e s u l t s  in [7]. 

The v e l o c i t y  d i s t r i b u t i o n s  in the  b o u n d a r y  l a y e r  at the  p o r o u s  p l a t e ,  wi thout  and wi th  i n j e c t i o n ,  a r e  
shown in F i g .  2 .  The  s t r a i g h t  l i ne  r e p r e s e n t s  the  "wa l l  law" b a s e d  on s t u d i e s  by W .  H.  D o r r a n c e  and 
F .  J .  D o r e  [8] and e x p r e s s e d  a s  

2u* I -+- . . . .  1 In q + c, (1) 
w b u* ] 

w h e r e  k i s  an e m p i r i c a l  c o n s t a n t  whose  va lue  h a s  been  a s s u m e d  to c o r r e s p o n d  to a f low wi thout  i n j e c t i o n  
(k = 0 A ) .  C o n s t a n t  c i s ,  g e n e r a l l y ,  a funct ion  of the  i n j e c t i o n  r a t e ,  a s  had  a l r e a d y  been  no ted  by M.  W.  
R u b e s i n  [9], W.  H.  D o r r a n c e  and F . J .  D o r e  [8], and T .  N.  S tevenson  [1, 2, 10].  The  m e a s u r e m e n t s  
m a d e  by T .  N.  S tevenson  [10], H.  M i c k l a y  and R .  So D a v i s  [3], V. K.  Johnson  and C .  J .  Scot t  [4] have  
shown,  a s  S.  K inney  h a s  no ted  in [11], t ha t  in a b o u n d a r y  l a y e r  s u b j e c t  to the  "wa l l  l aw"  the  c o n s t a n t  c 

T A B L E  1. In i t i a l  Da ta  a n d - C a l c u l a t e d  P a r a m e t e r s  

u*.lO 2 , ~.10 ~, * 
m/sec  wb' 102' Re** ~, rnm** m/sec  m2/sec ~1 ~1 
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0 1,86 
2,54 1,75 
3,0 1,82 
3,8 1,95 
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Fig .  3.  Dis t r ibu t ion  of mean  ve loc i ty  in the v i scous  sub l aye r :  
Eq.  (2) (1), b = 0 and Re** = 900 (2), b = 2.54 and Re** = 970 (3), 
b = 3 a n d r e * *  = 1240 (4), b = 3.8 and Re** = 1320 (5), Rel =uly l  

/ v  = cons t  (6), Re~ = ui*Yl/v = consto Dimens ion  Yl (m), Ux (m 
/sec). 

Fig .  4 .  D i m e n s i o n l e s s  p ro f i l e s  of the r a t e  of longi tudinal  and 
t r a n s v e r s e  v e l ~ u l s a t i o n s :  fi~/-~/u* with b = 0 (1), 2.54 (2), 
3 (3), 3.8 (4); ~/~P/u* with b = 0 (5), 2.54 (6), 3 (7), 3.8 (8). 

has  a l m o s t  the s a m e  value 4.9 o v e r  the en t i r e  r ange  of in jec t ion ve loc i ty  within which it  is  sti l l  poss ib l e  
to m e a s u r e  f r i c t ion  at the wall  with suff ic ient  a c c u r a c y .  

The ve loc i ty  d is t r ibu t ion  in the usual ly  a s s u m e d  thin (viscous) s u b l a y e r  of a tu rbu len t  boundary  l a y e r  
with in jec t ion is  de sc r ibed  by the equat ion:  

u* ( ~]Cvb' ) (2) cp= - e x p -  --I' , 
~ b t l  * , 

which can be t r a n s f o r m e d  into 

2u* 1 ~ - - -  - - 1  = exp - - - 1  (3) 
~ b  u* ] 2u* W b 

H e r e  the le f t -hand  s ides  of  Eqs .  (1) and (3) a re  iden t ica l .  

The main  e r r o r  in the t e s t  data  shown in F ig .  2 was  due to the i n a c c u r a t e  de t e rmina t ion  of loca l  
dynamic  ve loc i t i e s .  When w b = 0, the loca l  sk in - f r i c t ion  coef f ic ien t  in the e x p r e s s i o n  fo r  the dynamic  
ve loc i ty  was  found f r o m  the ve loc i ty  p rof i l e  n e a r  the wall  and a lso  by the K a r m a n  fo rmula  

2 
C~.---- 

(2,5in Re** -~ 3,8) 2 

The va lues  obtained fo r  the dynamic  ve loc i ty  by t he se  two me thods  r e s p e c t i v e l y  did not  d i f fer  by m o r e  
than 1.5%. The value of T b with in jec t ion was  found f r o m  the m e a s u r e d  ve loc i ty  d i s t r ibu t ion  in the v i scous  
sub laye r ,  under  the a s sumpt ion  that  th is  d i s t r ibu t ion  could be d e s c r i b e d  by Eq.  (2). 

It i s  to  be noted that  this  value of ~-b c o r r e s p o n d s  to the value of ~'b found by the e x t r e m a l  Ku ta t e l -  
a d z e - L e o n t ' e v  equation [12]: 

(1 (4) 

with b c r  = 5.5, a c c o r d i n g  to [13]. 

A s s u m i n g  Eq.  (2) to be valid fo r  a v i s cous  sub laye r ,  we could e s t i m a t e  the boundary  of  this  sub laye r  
#1, (Fig.  3) f r o m  the deviat ion of t e s t  points  f r o m  this  c u r v e .  F o r  a boundary  l a y e r  without in jec t ion,  such 
e s t i m a t e s  y ie lded  va lues  f o r  ~71 which ag reed  with the Hudimoto  model  [14], w h e r e  71 ~ 6 . 1  (at X = 0A and 
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c = 4.9). The relat ive variat ion of the dimensionless  velocity o~ along this boundary of the viscous sub- 
layer  with injection w~/w~0 = f(b) (col0 = (ul/u0)0 denoting the velocity without injection) agreed with the r e -  
suits based on the two- laye r  model [15, 16]: 

---;- = : (b). 
(010 

These values of the dimensionless  velocit ies co'l, co'10 could be easily obtained by solving simultaneously 
! 

Eqs.  (1) and (3). The absolute values w~, col, of course ,  differed considerably .  

There are  several  known approaches to establishing the stability c r i t e r i a  for a viscous sublayer .  
For  instance,  M. W. Rubesin [9] has suggested a constant Reynolds number  on the basis  of the velocity 
at the sublayer  boundary (Re 1 = ulYl/v = const . ) ,  while E o R,  van Dr ies t  [17] has suggested a constant Reynolds 
number  on the basis  of the dynamic velocity at the sublayer boundary (ReT = u~yl/v = cons t . ) .  Inasmuch 
as the definition of Yl is tentative, our test  data do not favor any of these c r i t e r i a .  It can only be noted that 
the curves  in Fig.  3 which correspond to Re1 = const~ and Re~ = const,  are  c lose .  

The values obtained for  col (with Re = const ,  or  Re~ = const . )  allow us to es t imate  the effect which 
the finiteness of the Re** number  has on Eq. (4). An analysis  has shown this effect to be appreciable 
enough when the finiteness of Re** is considered in the determination of bc r  [12]. 

For  determining the upper boundary of the transit ion region ~?T we used the data which had been ob-  
tained on the distribution of longitudinal velocity pulsat ions.  As is well known, the generation and the 
dissipation of kinetic energy of turbulence nea r  the impermeable  wall of a t ransi t ion layer  pass through a 
distinct maximum.  An analogous pat tern is observed also with injection.  In Fig,  4 is shown ~/fi12/u * as a 
function of ~ and b. If one a s sumes  the coordinate at which ~ reaches  its maximum to be the upper 
boundary of the t ransi t ion layer  77~, as I. J .  Shigemitsu has assumed in [18], then one may conclude that 
the thickness of the transi t ion layer  ~T dec reases  as the rate of injection inc reases .  The quantity ~ = y* 
/5  appears  to be more  conservat ive ,  although it also dec reases  (except when b = 3.8, see the data in 
Table 1). The quantity ~1, onthe other  hand, increases  with the injection rate .  Thus, the transit ion zone 
as a fraction of the total boundary- layer  thickness dec reases  as the injection rate  i nc r ea se s .  It ought 
to be noted here  that, as the p a r a m e t e r  b dec reases ,  the peak of longitudinal pulsations become sharper .  

We also obtained the distribution of longitudinal and t r ansve r se  velocity pulsations,  f rom which we 
could determine the variat ion in state p r e s s u r e  ac ross  the boundary l aye r .  The static p r e s s u r e  in a given 
section of a boundary l ayer  is 

P = P0 - -  P v-*~" 

The variat ion of static p r e s s u r e  ac ros s  the boundary layer ,  due to the p~l 2 component, did not exceed 
1% of the dynamic head pu20/2 in all our t e s t s .  

It must  be noted that this method of t rac ing the s t r eam with par t ic les  is more  difficult to apply at 
higher  injection ra tes ,  because then the par t ic les  move away f rom the channel wails.  

U T , V v 

u, :47alp 
r = Ux/U* 

= u ' y / ,  

Cf o 
Re** = Uo6**/v 
b = 2pbWb/powoCf o 

= (Cf/Cf0)Re** 
P 
P 
6** 
w 
co --= w/w 0 

N O T A T I O N  

are  the longitudinal and t r ansve r se  components of pulsating velocity; 
is  the dynamic velocity,  respect ively;  
is the dimensionless  velocity; 
is the dimensionless  distance from the wall; 
is the friction coefficient at a fiat impermeable  plate in an infinitely large  i sothermal  s t r eam;  
is the charac te r i s t i c  Reynolds number  for a boundary layer;  
is the wall permeabi l i ty;  
is the relat ive change in the frict ion coefficient at Re** = idem; 
is the static p re s su re ;  
is the density of the medium; 
is the momentum thickness;  
is the velocity; 
is the dimensionless  velocity; 
is the upper boundary of the transi t ion zone. 
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S u b s c r i p t s  

b, 0 refer to the wall and to the outer boundary of the boundary layer respectively; 
cr refers  to the stagnation pointl 
1 refers  to the viscous-sublayer boundary. 
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