STUDY CONCERNING THE LAMINAR SUBLAYER
REGION OF A TURBULENT BOUNDARY LAYER

WITH INJECTION
B. P. Mironov and P. P. Lugovskoi ‘ UDC 532.526.4

Results are shown of an experimental study concerning the laminar sublayer region of a

turbulent boundary layer with injection.

A turbulent boundary layer at a porous plate has been the subject of numerous studies, inasmuch as
such a type of flow is encountered in many practical problems. It is well known, for example, that both
the friction and the thermal flux at the wall decrease considerably even when the rate of injection is very
low,

At the present time there is already a sufficient volume of test data available pertaining to the mean-

velocity profiles in the fully developed furbulent region of a boundary layer with injection [1-5], Much
scarcer is the information available about the pulsating components in this region, and almost no measure-

ments have been made in the viscous sublayer.
In this study the authors have attempted to examine the flow pattern in the viscous sublayer.

k The tracing method, which had been perfected by the authors of [6], was employed here too., The
gist of this method was to photograph light-reflecting fine particles implanted info the stream and illu-

minated laterally from a pulsating light source.
The test apparatus is shown schematically in Fig, 1. The test segment was made up of a rectangular

channel 30 x 30 mm in cross section with translucent top and side walls.
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Fig. 1. Basic schematic diagram of the test instru-
mentation: (1) lamp, (2) slitted screen, (3) camera
objective, (4) translucent channel walls, (5) porous
plate, (6) injection, (7) camera, (8) audio generator,
(9) electronic stroboscope.
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Fig. 2. Distribution of mean velocity near the wall:
Eq. (1) and A =2.51In7 +4.9 (1), Eq. (3) and A

= (exp(ywp/2u*) —1) 2u* /wy, (2), b = 0 and Rex* = 900
(3), b = 2.54 and Rex* = 970 (4), b = 3 and Re**
=1240 (5), b = 3.8 and Re** = 1320, A = 2u*/wb
[((w},/u*) @ + 1)'/% —1] (6), according to tests by H.
Reihardt [7] (7).

Into the bottom wall of the channel was mounted a porous 6 x 200 mm plate. The tracks were photo~
graphed at a section 230 mm away from the channel entrance. The active medium was distilled water at
room temperature. The size of particles implanted into the stream was in the 5-20 ym range.

The optical instrumentation is also shown in Fig. 1. A slit directly in front of the IFK-120 flashing
lamp was projected by means of a wide-aperture objective and through the translucent channel lid into the
test zone of the stream. On the same test zone was focused the camera with an attachment for x 8 mag-
nification. With a mirror-type view finder it was easy to orient the camera toward the illuminated stream
zone near a channel wall and to track the flow during picture taking. A series of flashes of the lamp was
triggered by an electronic stroboscope to produce on the photographic film a series of images of the same
particle (intermittent tracking). The development of many frames contributed to a reliable determination
of the longitudinal u-components and the vertical v-components of mean flow velocities as well as the rms
of their pulsations vyu'® and yv'%, '

First we measured by this method the velocity and the turbulence level in the main stream. The
turbulence level here was 34%. The velocity in the stream outside the boundary layer was measured by
this method and also with a Pitot tube: the results did not differ by more than 0.5%. The velocity dis-
tribution in the viscous sublayer without injection agreed with the results in [7].

The velocity distributions in the boundary layer at the porous plate, without and with injection, are
shown in Fig, 2. The straight line represents the "wall law™ based on studies by W. H. Dorrance and
F. J. Dore [8] and expressed as

2u® {(1+Ebfp—)w——1}:—lk—mﬂ+c’ 1)

(] =
Lb 24

where k is an empirical constant whose value has been assumed to correspond to a flow without injection
k = 04). Constant c is, generally, a function of the injection rate, as had already been noted by M, W,
Rubesin [9], W. H. Dorrance and F, J. Dore [8], and T, N, Stevenson [1, 2, 10]. The measurements
made by T. N, Stevenson [10], H, Micklay and R, S, Davis [3], V. K. Johnson and C. J. Scott [4] have
shown, as S, Kinney has noted in [11], that in a boundary layer subject to the "wall law" the constant c

TABLE 1, Initial Data and-Calculated Parameters

2

|w0, m lwy. 10% " 5, ** u*-102, | v-108, &

| /sec !m/sec ke mm |m/sec | m*/sec ! =

' ; ,
0 1,8 | 0 900 | 0,55 | 8,8 ‘ 1,15 | 0,077 | 0,0116
2,54 | 1,75 | 1 970 | 0,55 | 4,5 1,0 0,063 | 0,0155
3,0 g | 1,06 | 1210 | 068 | 378 | 1.0 0,05 | 0,0174
3,8 1,95 i 1,56 | 1320 | 0,68 | 2,7 1,0 0,066 | 0,021
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(Fig. 3) (Fig. 4)

Fig. 3. Distribution of mean velocity in the viscous sublayer:
EQ. (2) (1), b = 0 and Rex* = 900 (2), b = 2.54 and Re** = 970 (3),
b = 3 and Re** = 1240 (4), b = 3.8 and Re** = 1320 (5}, Re; = wiyy
/v = const (6), Re} = uly,/v = const. Dimension y; (m), ux (m
/sec).

Fig. 4. Dimensionless profiles of the rate of longitudinal and
transverse velocity pulsations: \/ﬁiz/u* with b =0 (1), 2.54 (2},
33), 3.8 (4);J\712/u* with b = 0 (5), 2.54 (6), 3 (7), 3.8 (8).

has almost the same value 4.9 over the entire range of injection velocity within which it 1s still possible
to measure friction at the wall with sufficient accuracy.

The velocity distribution in the usually assumed thin (viscous) sublayer of a turbulent boundary layer
with injection is described by the equation:

== (exp w‘—l), )
wb u* y
which can be transformed into
o, *
2ur 1+"”b“’) 1 :(exp @ —1) ur_ 3)

Here the left-hand sides of Eqgs. (1) and (3) are identical.

The main error in the test data shown in Fig. 2 was due to the inaccurate determination of local
dynamic velocities. When wy, = 0, the local skin-friction coefficient in the expression for the dynamic
velocity was found from the velocity profile near the wall and also by the Karman formula

2
(2,5 In Re** 4- 3,8y

Ci, =

The values obtained for the dynamic velocity by these two methods respectively did not differ by more
than 1.5%. The value of 7y, with injection was found from the measured velocity distribution in the viscous
- sublayer, under the assumption that this distribution could be described by Eq. (2).

It is to be noted that this value of h corresponds to the value of 73, found by the extremal Kutatel-
adze—Leont'ev equation [12]:
2
v — ( b > 4)

bCl‘
with bey = 5.5, according to [13].
Assuming Eq. (2) to be valid for a viscous sublayer, we could estimate the boundary of this sublayer
11, (Fig. 3) from the deviation of test points from this curve. For a boundary layer without injection, such
estimates yielded values for 5, which agreed with the Hudimoto model [14], where n; ~6.1 (at y = 0.4 and
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¢ =4.9). The relative variation of the dimensionless velocity «w; along this boundary of the viscous sub-
layer with injection wi/wip = f(b) (wiy = (/U)o denoting the velocity without injection) agreed with the re-
sults based on the two-layer model [15, 16]:

These values of the dimensionless velocities wi, wy, could be easily obtained by solving simultaneously
Eqgs. (1) and (3). The absolute values wq, w;, of course, differed considerably,

There are several known approaches to establishing the stability criteria for a viscous sublayer.
For instance, M. W. Rubesin [9] has suggested a constant Reynolds number on the basis of the velocity
at the sublayer boundary (Re; = u;yy/v = const.), while E, R, van Driest {17]has suggested a constant Reynolds
number on the basis of the dynamic velocity at the sublayer boundary (Ref = u¥y;/v = const.). Inasmuch
as the definition of y; is tentative, our test data do not favor any of these criteria. It can only be noted that
the curves in Fig. 3 which correspond to Re; = const. and Ref = const. are close.

The values obtained for o (with Re = const. or Re} = const.) allow us to estimate the effect which
the finiteness of the Re** number has on Eq. {4). An analysis has shown this effect to be appreciable
enough when the finiteness of Rex* is considered in the determination of bgy {12].

For determining the upper boundary of the transition region i we used the data which had been ob-
tained on the distribution of longitudinal velocity pulsations. Asis well known, the generation and the
dissipation of kinetic energy of turbulence near the impermeable wall of a transition layer pass through a
distinet maximum. An analogous pattern is observed also with injection, In Fig, 4 is shown Jat?/u* asa
function of » and b. If one assumes the coordinate at which \/ﬁiz/u* reaches its maximum to be the upper
boundary of the transition layer nf, as I. J. Shigemitsu has assumed in [18], then one may conclude that
the thickness of the trangition layer WT decreases as the rate of injection increases. The quantity £ =yF
/& appears to be more conservative, although it also decreases (except when b = 3,8, see the data in
Table 1), The quantity ¢, onthe other hand, incieases with the injection rate. Thus, the transition zone
as a fraction of the total boundary-layer thickness decreases as the injection rate increases, It ought
to be noted here that, as the parameter b decreases, the peak of longitudinal pulsations become sharper.

We also obtained the distribution of longitudinal and transverse velocity pulsations, from which we
could determine the variation in state pressure across the boundary layer. The static pressure in a given
section of a boundary layer is

P =Dy —“PZIZ-

The variation of static pressure across the boundary layer, due to the p{hz component, did not exceed
1% of the dynamic head pu%/z in all our tests.

It must be noted that this method of tracing the stream with particles is more difficult to apply at
higher injection rates, because then the particles move away from the channel walls.

NOTATION
u', v' are the longitudinal andtransverse components of pulsating velocity;
uk =v71/p isthe dynamic velocity, respectively;
@ = Uy/u* is the dimensionless velocity;
1 =uwky/v is the dimensionless distance from the wall;
Ct, isthe friction coefficient at a flatimpermeable plate in an 1nf1n1te1y large isothermal stream;

Rex* =y 5%+ /v is the characteristic Reynolds number for a boundary layer;
b = 2ppWh/ pgWCf, is the wall permeability;
= (Cy¢/ Ci)Retx  is the relative change in the friction coefficient at Re** = idem;

s} is the static pressure;

0 is the density of the medium;

Sx* is the momentum thickness;

W is the velocity;

w = W/ Wy is the dimensionless velocity; .
£t, nf is the upper boundary of the transition zone.

325



Subscripts

b, 0 refer to the wall and to the outer boundary of the boundary layer respectively;

cr
1

10.
11,
12,

13.
14,

15,
16,
17.

18,
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refers tothe stagnation point;
refers to the viscous-sublayer boundary.
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